
8 CROSSTALK The Journal of Defense Software Engineering November 2005

Software development has a way of
becoming difficult over time. While

they often start well, software projects
begin to bog down as enhancements are
made to meet new demands and as devel-
opment teams change. It takes longer to
fix problems because fixes made in one
area end up introducing bugs in other
areas. In no time, a project becomes so
complex that no single engineer under-
stands the whole system. As a result, orig-
inal design assumptions are lost and the
boundary between various parts of the
system begins to blur. Systems that started
out as modular become monolithic.

A powerful new approach, based on
using the Dependency Structure Matrix
(DSM), has recently been proposed for
specifying software architectures. This
approach has been built upon ideas that
have actually been around for a very long
time. The basic notion of divide and conquer
has been around since time immemorial.
Engineers take a large system and decom-
pose it into subsystems; when a subsystem
itself becomes too large, it is in turn split
up in a process called hierarchical decomposi-
tion. The decomposition is done in such a
way that closely coupled subsystems are
closer to each other, while loosely coupled
subsystems are kept farther apart.

The problem in software systems is
that it is very easy for developers to create
undesirable couplings between subsystems.
Often this is done without an understand-
ing of the overall system. As a result, sub-
systems become tightly coupled over time.

The new approach has two key ele-
ments: (1) a precise hierarchical decompo-
sition and (2) explicit control over allowed
and disallowed dependencies between the
subsystems. DSM is ideal for this
approach because it provides a compact
representation that can easily scale up to
tens of thousands of classes or files,
whereas conventional box-and-arrow dia-
grams become unusable for systems com-
posed of even a few hundred classes.

Understanding DSM
Brief History
DSM has traditionally been used to model
tasks involved in the development of dis-
crete products. The structure of depend-
encies between tasks helps in understand-
ing which tasks can be done in parallel and
which have to be performed sequentially.
Cyclic dependencies are indicators of pos-
sible rework that may be necessary. Steven
Eppinger at Massachusetts Institute of
Technology’s Sloan School [1] spearhead-
ed the application of DSM within some of
the largest companies in the world, includ-
ing Boeing, General Motors, Intel, and
many others. However, applying DSM to
software is new.

Software engineers have always under-
stood the importance of dependencies
between modules. However, they have
tended to visualize the modules and their
dependencies as directed graphs, i.e., box-
and-arrow diagrams. The Unified
Modeling Language (UML) makes exten-
sive use of directed graphs, where a vari-

ety of boxes and line types are used to
indicate the many types of relationships
that might exist between different types of
modules. This is useful for detailed design
but quickly becomes unwieldy as the size
of the application increases.

UML diagrams provide limited value
in controlling the actual implementation.
Indeed, far from controlling the design of
the application, developers feel burdened
when they have to do a round trip back to
their UML models to keep them synchro-
nized with code. Many development
teams simply stop maintaining their UML
models beyond the initial stages of the
project.

Using matrices in systems engineering
has a long history. Systems engineers have
used N-squared diagrams to model the
input and output flows within their sys-
tem. Subsequent work by Baldwin and
Clark at Harvard Business School [2]
employing DSM to model the evolution of
the computer industry brought it one step
closer to the engineering of software.

The key ideas underlying our approach
[3], like most ideas in dependency tools,
are not new. The notion of inter-module
dependency was articulated by Parnas in
his early papers (most notably [4]), and the
extraction and exploitation of dependen-
cies has been the subject of many more
recent projects. The potential significance
of the DSM for software was noted by
Sullivan et al. [5] in the context of evaluat-
ing design tradeoffs. Similarly, Lopes and
Bajracharya [6] have also applied DSM to
study the value of aspect-oriented modu-
larization. MacCormack et al. [7] have
applied the DSM to analyze the value of
modularity in the architectures of Mozilla
and Linux.

Our approach, however, is the first
application of DSM for the explicit man-
agement of inter-module dependencies.
More information about DSM and avail-
able tools, including those from Lattix,
can be found at <www.dsmweb.org>.

Dependency Models to 
Manage Software Architecture

Neeraj Sangal and Frank Waldman
Lattix, Inc.

This article describes a new approach for managing software architectures. It uses inter-module dependencies to specify and
manage the architecture of software applications. The technique, based on a matrix representation, is simple, intuitive, and
appears to scale far better than the directed graph representations that are used currently. It enables specification and auto-
matic enforcement of architectural intent such as layering and componentization. The article concludes by showing how this
approach can be applied to a real application. We build a dependency model to represent the architecture of Ant, a popular
Java build utility. We then examine how Ant’s architecture has evolved over several versions of the software. 

Figure 1 A-B: A Simple DSM Before and After Partitioning

Figure 1A Figure 1B



Making Sense of DSM
Figure 1A shows a simple DSM for a sys-
tem that consists of four subsystems
labeled Modules A, B, C, and D. In the
square matrix, the row and column num-
ber represent the same module (for com-
pactness, only the rows are labeled). The
cells in the grid show the strengths of the
interdependencies between each module.

The way to read a DSM is to read the
dependencies down a column. For
instance, column 1 shows that Module A
depends on Module C with dependency
strength of 4. Correspondingly, reading
across row 1 tells us that Module A pro-
vides to Module C and Module D with
dependency strengths of 1 and 2 respec-
tively.

Traditionally, DSM has often used an
X to indicate a dependency. Also note that
a large part of DSM literature reverses our
convention of how rows and columns are
used. They use rows to indicate dependencies
and columns to indicate provides. However,
we have found that our convention is a lit-
tle more intuitive for software engineers
and is also consistent with N-squared dia-
grams.

Figure 1B shows the DSM after parti-
tioning. Partitioning is a special operation
that reorders and regroups modules. The
modules are ordered in such a way that
those modules that provide to other mod-
ules are placed at the bottom of the DSM,
while modules that depend on other mod-
ules are placed at the top. If there were no
dependency cycles, this would yield a lower
triangular matrix, i.e., one without any
dependencies above the diagonal.

Partitioning also groups together those
systems that have dependency cycles. In
this case, Modules A and C depend on
each other and therefore have been
grouped together. This form of the matrix
is called block triangular because it has been
split up into three blocks in which there
are no dependencies above the diagonal.
Layered systems are naturally expressed as
lower triangular matrices.

The grouping of modules can also be
shown in different ways. A new com-
pound module can be formed by merging
Modules A and C as shown in Figure 2A,
after which the matrix becomes lower trian-
gular. Notice also that Module D now
depends upon the new Module A-C with
dependency strength of 5, which is an
aggregation of Module D’s dependency
on both Module A and Module C.

Furthermore, the identities of the
basic modules can still be retained by
introducing a hierarchy, as in Figure 2B, in
which the grouping of A and C is shown
by their indentation. The hierarchical

decomposition shows that the system has
been decomposed into three subsystems:
Module D, Module A-C, and Module B.
Module A-C is in turn decomposed into
Module A and Module C.

This might seem like a simple example
but hierarchy is key to scaling with DSM.
Hierarchy enables DSM to conveniently
model systems with thousands of classes.
Hierarchy is also important to the succinct
definition of design rules that are used to
specify allowed and disallowed dependen-
cies. Design rules can be used to specify
architectural patterns such as layering,
componentization, external library usage,
and other dependency patterns between
subsystems. When DSM is combined with
design rules, they are called dependency
models.

Defining a Dependence Relationship
Before DSM can be applied to software, we
need to define the meaning of the statement
“a module is dependent upon another mod-
ule.” DSM is a general device that leaves the
choice of the definition of dependency to
its user. In this case, we are interested in the
architecture of the software from a developer’s
perspective. This perspective is important if
we are to keep the design modular and to

prevent the complexity from spiraling out of
control over time.

Therefore, we say that Module A
depends upon Module B if the developer
of Module A needs to know about the
behavior of Module B. The good thing
about this definition for software engi-
neering is that, except in a few cases, this
can generally be deduced by automatic
analysis directly from source code of lan-
guages such as Ada, C/C++, and Java.
The automatic analysis can be accom-
plished by utilizing commercially available
programs to extract the dependencies. For
newer languages such as Java and C#, the
dependencies can even be extracted from
byte code.

For example, in Java we define a Class
A as being dependent on Class B if the
following occurs:
1. Class A inherits from Class B (imple-

ments in the case of an interface).
2. Class A calls a method or a construc-

tor in Class B.
3. Class A refers to a data member in

Class B.
4. Class A refers to Class B (e.g., as in an

argument in a method).
The dependency strength can be calcu-

lated in a variety of ways. One is to look at

November 2005 www.stsc.hill.af.mil 9

Dependency Models to Manage Software Architecture

Figure 2 A-B: The Regrouped DSM and Its Hierarchical Expansion 

Figure 3 A-D: Architecture Patterns in a DSM 

3A: Layered Pattern 3B: Strictly Layered Pattern

3C: Imperfectly Layered Pattern 3D: Component Pattern

Figure 2A Figure 2B



the number of classes each class depends
on; that number is then aggregated in the
hierarchy. Yet another possible way is to
calculate the dependency strength based
on the number of actual uses each class
makes of other classes; that number is then
aggregated in the hierarchy. Furthermore,
it is sometimes useful to filter out specific
dependencies such as class references
because eliminating them is easy.

Architecture Patterns in a
Dependency Model
Layering and Componentization
in a DSM
The DSM representation is uniquely suit-
ed for representing certain architectural
patterns. Layering is one such pattern. In

fact, even when the layering is imperfectly
implemented it can still be recognized in a
DSM.

Figure 3A shows the example of a lay-
ered system. The figure illustrates that the
system consists of five subsystems: appli-
cation, model, domain, framework, and util. The
DSM shows that the layer at the bottom,
util, does not depend on any of the other
subsystems; framework depends on util;
domain depends on framework and util; and
so on. The lower triangular nature of the
matrix makes it immediately apparent that
this is a layered system. Figure 3B shows a
strictly layered system where each layer
depends only on the preceding layer.

Finally, Figure 3C shows an imperfect-
ly layered system. Since the DSM is not

lower triangular even after partitioning, we
know that there are cyclic dependencies.
In this case, the dependencies in column 5
indicate that util has dependencies on
application and model. However, the imbal-
ance between the strength of the depend-
encies suggests that this is an imperfectly
layered system.

This discussion must not be construed
to suggest that every software application
should have a layered design. While a
majority of large applications are layered,
DSM itself makes no prescription about
whether applications should always be lay-
ered. However, for those applications that
are layered, a representation based on DSM
is natural and powerful. As we shall see
shortly, design rules allow these architectur-
al patterns to be enforced quite easily.

Figure 3D shows private subsystems
comp-1, comp-2, and comp-3 within subsys-
tem domain. The DSM reveals that nothing
in the system depends on these private
subsystems. Furthermore, the DSM illus-
trates that these private subsystems do not
depend on each other. This suggests that
it is likely that they could be worked upon
in parallel once the framework that they
depend on is in place.

Design Rules: Enforcing
Architectural Patterns
The architectural patterns that were
described in the previous section can be
enforced using design rules. The underly-
ing concept of design rules is quite simple:
Once you represent the architecture in a
hierarchical DSM, then specifying which
cells are allowed or disallowed from hav-
ing dependencies is a natural extension to
document and communicate the design
intent.

When design intent in the form of
design rules is added to a DSM, the result
is a dependency model. This dependency
model communicates not just what the
actual dependencies are but also the
allowed and disallowed dependencies. The
matrix representation provides a succinct
and intuitive visualization for design rules.
Figure 4A shows a DSM with design rules
expressed as triangles in the corners of
the cells. The upper left triangle repre-
sents an allowed dependency, while the
lower left triangle represents a disallowed
dependency and the upper right triangles
represent design rule violations. The use
of colors can enhance usability; for
instance, the triangles can be colored
green, yellow, or red to indicate an allowed
dependency, a disallowed dependency, or
a violation, respectively.

If the DSM grid represents the design
space, the design rules qualify that design

Design

10 CROSSTALK The Journal of Defense Software Engineering November 2005

Figure 4 A-B: DSM with Design Rules

Figure 5: Conceptual Architecture of Ant

Figure 4A Figure 4B



Dependency Models to Manage Software Architecture

space by specifying which parts of the
design space are allowed to have depend-
encies and which are disallowed. In a sys-
tem with 1,000 classes, a fully expanded
DSM grid has one million cells. Since each
cell represents design intent, there are one
million possible design rules. Fortunately,
classes interact with each other in fairly
regular ways. Layers are just one example
of how classes within each layer interact
with classes in other layers. For a five-layer
system, just five rules are needed to speci-
fy their interaction regardless of the num-
ber of classes within the system. Figure
4B shows the design rules for enforcing
the layers in such a system. Note that
showing only the cannot-use rules tends
to make the DSM more readable.

Software degrades from release to
release because implicit design rules such
as layering are violated. Previously, archi-
tects did not have a way to specify, track,
or enforce these implicit rules. Depen-
dency models now offer the potential for
maintaining the architecture over succes-
sive revisions of the life cycle by specify-
ing rules explicitly that define the accept-
able and unacceptable dependencies
between subsystems. In cases where archi-
tecture has evolved and design rules need
to be changed, violations can actually
make architectural evolution explicit for
the entire development team

Tracking Architecture
Evolution in a Dependency
Model
We will apply the dependency model
approach to Ant, a popular Java build util-
ity. Ant is an open source application that
is used by developers to compile, create jar
files, build executables, and other sundry
development tasks.

One of the principal reasons for the
success of Ant has been the notion of
tasks. Tasks are named entities that do the
actual work and utilize the common Ant
framework for doing so. Examples of
tasks are compile, copy, make directory, and cre-
ate jar file. Over time, a large number of
tasks have been created by independent
developers all over the world. This has
worked well because the architects of Ant
had the foresight to keep the tasks in a
layer separate from the framework.

Figure 5 illustrates this conceptual
architecture. Ant has been decomposed
into three layers: taskdefs, ant, and util. The
taskdefs layer contains the tasks, the ant
layer contains the framework, and the util
layer contains utilities that could be used
by both the framework and tasks.

The dotted lines between the subsys-

tems illustrate allowed dependencies,
while the dotted lines with a disallow sym-
bol illustrate disallowed dependencies.
The layered approach reduces complexity
and minimizes the likelihood that a bug
introduced in the development of a task
will affect the framework, that in turn
could affect other tasks.

The DSM for Ant Vers. 1.4.1 in Figure
6 shows that Ant has three distinct layers.
However, the Ant framework represented
by the middle subsystem is largely mono-
lithic. For Vers. 1.4.1, it was not a signifi-
cant issue because the Ant framework was
quite small at the time. We also note that
the Java package names do not reflect the
layering.

By comparison, the DSM for the cur-
rent version of Ant in Figure 7 shows that

architectural violations have begun to
creep in as the Ant framework has
become dependent on the taskdefs layer.
Further, the application is now consider-
ably larger while the Ant framework con-
tinues to be largely monolithic. However,
it should be noted that the architecture of
Ant is still not as bad as we have seen in
many other commercial systems that
receive less scrutiny than Ant.

Frequently, systems become so com-
plex that development teams suggest a
rewrite. This is inherently a high-risk deci-
sion since there is no way to guarantee that
the new system will not suffer from simi-
lar problems of complexity. The depend-
ency model already gives us guidance
about which dependencies to fix and their
relative priority. This analysis of the

November 2005 www.stsc.hill.af.mil 11

Figure 6: A Dependency Model for Ant Vers. 1.4.1

Figure 7: Dependency Model for Ant Version 1.6.1



Design

dependencies reveals where the architec-
ture is really broken and whether remedia-
tion requires a complete rewrite or just a
fix to the problematic dependencies. Note
that additional analysis using the DSM can
easily be conducted to explore alternate
organization of the architecture, and how
the framework itself can be split up so it is
no longer monolithic.

Dependency models can also be
extended to specify the dependencies of
each subsystem upon external libraries.
First, the dependency model is examined
to see what external libraries are used and
which subsystems use them. For instance,
in Ant Vers. 1.6.1, we find that some of
the external libraries in use include
org.apache.bcel, org.apache.bsf, and org.apache.
xml. Design rules can then be used to
specify the subsystems that are allowed to
use these external libraries. Controlling the
use of external libraries can pay rich divi-
dends. In addition to helping to maintain
architectural integrity, segregating the use
of external libraries can also ease the job
of migrating to new technologies as they
become available.

Architecture Management as
Part of CMMI
The dependency model provides a new
way to define and enforce architecture for
software engineering process initiatives
such as Capability Maturity Model® Inte-
gration (CMMI®). A shared understanding
of the architecture and managing its
change can significantly improve the
results that can be derived from these
CMMI specific process areas:
• Requirements Development: Base-

line conceptual architecture and
dependency model for inclusion in the
technical data package.

• Technical Solution: Assess architec-
tural alternatives, formalize precise
subsystem decomposition, and define
the dependencies between the decom-
posed subsystems. Measure and verify
architectural conformance.

• Product Integration: Identify com-
ponents for product line architectures.
Remove redundancies. Improve testa-
bility of products.

• Project Planning: Estimate impact of
new feature requests and track
progress against architectural changes.

• Decision Analysis and Resolution:
Document rationale for architectural
changes, understand risks, evaluate,
and estimate impact of proposed
changes.

In addition, the dependency model
approach provides new means to make
architecture management part of the
CMMI generic processes. It can be used to
manage architecture configurations; in-
volve stakeholders; and to evaluate, moni-
tor, and control the architecture.

Conclusion
Architecture is integral to software quality.
Unless the architecture is explicitly
defined, communicated, and controlled, it
will degrade as the complexity increases
through the life cycle. The dependency
model is a powerful new way to manage
the architecture of software applications.

It is highly advisable that architecture
be tested automatically as part of regular
builds. Inadvertent violations can then be
fixed immediately, avoiding expensive
remediation later in the development cycle.
This approach is lightweight – dependency
models can be checked and updated auto-
matically with intervention being required
only when violations are detected.u

References
1. Eppinger, Steven D. “Innovation at

the Speed of Information.” Harvard
Business Review Jan. 2001.

2. Baldwin, C.Y., and K.B. Clark. The

Power of Modularity Vol. 1. Cam-
bridge, MA: MIT Press, 2000.

3. Sangal, Neeraj, Ev Jordan, Vineet
Sinha, and Daniel Jackson, “Using
Dependency Models to Manage
Complex Software Architecture.”
OOPSLA 2005, San Diego, CA. 16-20
Oct. 2005.

4. Parnas, D.L. “Designing Software for
Ease of Extension and Contraction.”
IEEE Transaction on Software
Engineering 5.1 (Mar. 1979): 128-138.

5. Sullivan, K., Y. Cai, B. Hallen, and W.
Griswold. “The Structure and Value of
Modularity in Software Design.” Proc.
of the 8th European Software En-
gineering Conference, Vienna, Austria.
10-14 Sept. 2001.

6. Lopes, Cristina Videira, and Sushil
Bajracharya. “An Analysis of Modular-
ity in Aspect-Oriented Design.” Proc.
of Aspect-Oriented Software Devel-
opment Conference, Chicago, IL. Mar.
2005.

7. MacCormack, Alan, John Rusnak, and
Carliss Baldwin. “Exploring the Struc-
ture of Complex Software Designs:
An Empirical Study of Open Source
and Proprietary Code.” Harvard
Business School. Working Paper No.
05-016.

12 CROSSTALK The Journal of Defense Software Engineering November 2005

About the Authors

Neeraj Sangal is pres-
ident of Lattix Inc.,
which specializes in
software architecture
management solutions
and services. He has

analyzed many large proprietary and
open source systems. Previously, Sangal
was president of Tendril Software that
pioneered model-driven Enterprise Java
Beans development and synchronized
Unified Modeling Language models for
Java. Prior to Tendril, he managed a dis-
tributed development organization at
Hewlett Packard. Sangal has published
and presented papers, most recently a
joint work on architecture management
presented at the Object-Oriented Pro-
gramming, Systems, Languages, and
Applications 2005 conference.

Lattix, Inc.
8 Harper CIR
Andover, MA 01810
Phone: (978) 474-5022
E-mail: neeraj.sangal@lattix.com

Frank Waldman is
vice president at Lattix,
Inc. He has extensive
experience building
companies with inno-
vative technology in a

number of industries, including engi-
neering software, consumer electron-
ics, manufacturing, and product devel-
opment services. Prior to Lattix,
Waldman was responsible globally for
building markets for the product life-
cycle management software business of
Eigner, which was acquired by Agile
Software to create the largest pure-play
product lifecycle management vendor
in the global market. He has a Bachelor
of Science and Master of Science from
Massachusetts Institute of Technology,
and holds numerous patents.

Lattix, Inc.
8 Harper CIR
Andover, MA 01810
Phone: (978) 474-5022
E-mail: frank.waldman@lattix.com

® Capability Maturity Model and CMMI are registered in
the U.S. Patent and Trademark Office by Carnegie
Mellon University.


